mycopula

Copula Regression (Multiple predictors) using Nested Copula

Case: 2 Predictors

Load data
Define predictor data x and response y.

load stockreturns
x = stocks(:,2:3);
y = stocks(:,1);

Perform regression (2 Predictors)
Use that data to perform a regression.

[yhat,CI] = copreg(x,y,'xpred',x,'ypred',y,'method','nested');
% ===== OUTPUT =====
Fit copula (X,Y)
Fitting Progress: 2/2
Fit copula (X)
Fitting Progress: 1/1
Case: 2-predictor
Method: nested
Regression Progress: 100.00%
Data length for fitting = 100
Data length for predicting = 100
Evaluation Results:
RMSE = 0.71676
MAPE = 5.4411
wMAPE = 0.69542

Case: 7 Predictors

Define predictor data x and response y. Use that data to perform a regression.

load stockreturns
x = stocks(:,2:8);
y = stocks(:,1);
[yhat,CI] = copreg(x,y,'xpred',x,'ypred',y,'method','nested');
% ===== OUTPUT =====
Fit copula (X,Y)
Fitting Progress: 7/7
Fit copula (X)
Fitting Progress: 6/6
Case: 7-predictor
Method: nested
Regression Progress: 100.00%
Data length for fitting = 100
Data length for predicting = 100
Evaluation Results:
RMSE = 1.0125
MAPE = 4.134
wMAPE = 0.9

Download: this example is available on demo6.m. Visit Github


< Home
< Menu
View on Github

Visit my personal blog
@ 2021-2023 Mohamad Khoirun Najib